加入收藏 | 设为首页

最高比Mask-RCNN快3倍!上交大实时姿态估计AlphaPose升级

来源:本站原创 发布时间:2019-04-13

  新智元将于9月20日在北京国家会议中心举办AI WORLD 2018世界人工智能峰会,南京大学计算机系主任、人工智能学院院长周志华教授届时将亲临会场做《关于机器学习的一点思考》主题演讲。周志华教授是AI领域会士“大满贯”得主,AAAI 2019程序主席、铁算盘开奖结果,http://www.pofaiho.comIJCAI 2021程序主席,《机器学习》一书的作者。

  新智元报道来源:上海交通大学【新智元导读】上海交通大学卢策吾团队MVIG实验室最新上线了他们此前开源的实时人体姿态估计系统AlphaPose的升级版。新系统采用 PyTorch 框架,在姿态估计标准测试集COCO上达到当前最高精度71mAP,同时平均速度20FPS,比Mask-RCNN速度快3倍。

  今年2月,上海交通大学卢策吾团队MVIG实验室AlphaPose 系统上线,是首个在 COCO 数据集上可达到 70+ mAP 的开源姿态估计系统。本次更新,在精度不下降情况下,实时性是一大提升亮点。

  人体关键点检测对于描述人体姿态,预测人体行为至关重要。因此,人体关键点检测是诸多计算机视觉任务的基础。其在动作分类,异常行为检测,以及人机交互等领域有着很广阔的应用前景,是计算机视觉领域中一个既具有研究价值、同时又极具挑战性的热门课题。

  AlphaPose系统,是基于上海交大MVIG组提出的 RMPE 二步法框架(ICCV 2017论文)构建的,相比其他开源系统在准确率有很大提高,比OpenPose相对提高17%,Mask-RCNN相对提高8.2%。

  升级后,各个开源框架在COCO-Validation上性能,时间在单卡1080ti GPU测出指标如下:

  新版 AlphaPose 系统,架设在 PyTorch 框架上,得益于Python的灵活性,新系统对用户更加友好,安装使用过程更加简易,同时支持Linux与Windows系统使用,方便进行二次开发。此外,系统支持图片、视频、摄像头输入,实时在线计算出多人的姿态结果。

  为了在兼顾速度的同时保持精度,新版AlphaPose提出了一个新的姿态估计模型。模型的骨架网络使用 ResNet101,同时在其下采样部分添加 SE-block 作为 attention 模块——已经有很多实验证明,在 Pose Estimation 模型中引入 attention 模块能提升模型的性能,而仅在下采样部分添加 SE-block 能使 attention 以更少的计算量发挥更好的效果。

  PixelShuffle + Conv 进行3次上采样,输出关键点的热度图。传统的上采样方法会使用反卷积或双线性插值。而使用 PixelShuffle 的好处在于,在提高分辨率的同时,保持特征信息不丢失。对比双线性插值,运算量低;对比反卷积,则不会出现网格效应。

  在系统架构方面,新版 AlphaPose 采用多级流水的工作方式,使用多线程协作,将速度发挥到极致。


Copyright 2017-2023 http://www.defah.com All Rights Reserved.